
Membraneless organelles (MLOs) are biological liquid-liquid phase separation (LLPS) highly exploited both in the cell nucleus and cytosol in order to maintain 

homeostasis[1-2]. Nonetheless, the physical mechanisms driving their formation are not fully understood. In this study, we investigate the formation of MLOs in the 

proximity of the LLPS boundary using a simplified molecular system composed of independent unstructured RNA chains, to which we progressively add cationic peptides. 

We quantify the molecular aggregation states on both sides of the phase boundary, and show that our observations match the predictions obtained by balancing the 

competing entropy losses involved in the compression of the RNA chains and in the non-uniform peptide distribution.
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We consider mixtures of oppositely 

charged model polymers

• Homopolymeric RNA (∼1000 nt)

• QRNA ∼1000e- net charge

• Unstructured → Random coil

• No self pairing interactions, 

negligible base stacking

• Ideal chain at high salt with 

persistence length 𝜉𝑝 ≈ 8 Å [3]
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We explored the phase behaviour of PolyU chains in increasing peptide concentration 𝑪𝑷𝒆𝒑𝒕𝒊𝒅𝒆 

2. Experimental outline1. Model system
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PolyU

meCP

Poly-L-Lysine (PLL)

• QP= 7e+ net charge

• 23 a.a. sequence

• Inspired from RNA 

binding domains [5]

• Sticker-and-spacer

architecture [6]

• Methylated on N and G 

backbone nitrogen

• Homopolymeric peptide

• Two sizes, 25 and 74 a.a.

• Uniformly positively 

charged

• QP= 25e+, 74e+ net charge

This work has received fundings from the UNIMI GSA-IDEA project and the Fondazione Romeo ed Enrica Invernizzi

⟨𝑹𝒉⟩ = 𝟔 ± 𝟏. 𝟓 nm

⟨𝑹𝒈⟩ = 𝟗 ± 𝟑 nm [4]
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3. Threshold behaviour

Through light scattering we quantitatively measure molecular quantities and stochiometric ratios in both phases

Phase separation is activated for peptide concentration above threshold 𝑪𝑷𝒆𝒑𝒕𝒊𝒅𝒆 > 𝑪𝑷𝒆𝒑𝒆𝒕𝒊𝒅𝒆
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4. Phase behaviour

Integrating LS data with confocal measurements 

of dense phase volumes fraction 𝝓𝒅

allowed to define an experimental 

phase diagram 
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5. Entropic interplay

Numerical model is built on four main assumptions based on experimental data

𝑆𝑃1 𝑆𝑃2

𝑆𝑃1 > 𝑆𝑃2
𝑆𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠, 𝑠 > 𝑆𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠, 𝑑

𝑆𝑅𝑁𝐴, 𝑠(𝑃) < (𝑆𝑅𝑁𝐴, 𝑑 ≈ 𝑆𝑅𝑁𝐴, 𝑠
0 )
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+peptide

Conformational entropy reduction in 

compacted RNA coils

Positional entropy reduction + 

conformational entropy gain in 

demixing

Peptide distribution entropy 

reduction in demixing

The model quantitatively predicts the threshold and the molecular partitioning
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